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 We have acquired, or are in the process of acquiring, air pollution exposure estimates from 
several modeling groups. A recent administrative supplement to our R01 (approved ancillary 
study #2020.09) has allowed us to expand the number of air pollution exposure estimates 
available to us. This proposal aims to explain how we plan to use the data produced by the 
different groups to compare estimates of annual-average air pollution exposures, and to quantify 
whether choice of modelling approach influences estimated associations with cognition and 
related neuroimaging outcomes. It will also discuss the importance of this analysis. 
  
 Ambient air pollution (AAP) has become one of the greatest environmental health risk 
factors due to both its ubiquitous nature and its adverse toxicological effects on human health [1-
3].  Globally, over 90% of the world’s population living in areas with AAP that exceeds WHO 
attainment limits.  In 2019, an estimated 4.1 million deaths (118 million Disability Adjusted Life 
Years (DALYs)) were attributable to ambient PM2.5 and 365,000 deaths (6.2 million DALYs) to 
ozone [3]. Particularly, low and middle income countries are disproportionately impacted [3, 4]. 
Furthermore, AAP exposure can impact a wide range of health outcomes across the lifespan. 
Prenatal exposure to air pollution is associated with low birth weight [5, 6], worse childhood 
cognitive function [7-9], and reduced lung function [10-12]. AAP exposure can also impact 
respiratory health among children, for example by exacerbating asthma [13], and recent studies 
suggest mental health effects [14, 15]. Among adults, AAP exposure has been associated with 
cardiovascular and respiratory morbidity and mortality [16-22], hypertension [23-25], cancer 
[26-30], and adverse neurological outcomes such as dementia [31-33].  
 While air pollution epidemiology is a rapidly expanding field that has allowed for 
examining associations between ambient air pollution and several health outcomes, more work is 
needed to close knowledge gaps and mitigate health burden associated with AAP. Accurate 
exposure assessment is necessary and critical to understand health impacts of environmental 
exposures in environmental epidemiology. Air pollution exposure assessment is particularly 
challenging due its nature of spatial and temporal variations.  For some outcomes of interest, 
such as dementia, the relevant exposure period may precede disease development by decades.  
Therefore, accurately measuring long-term human air pollution exposure is an extremely difficult 
endeavor. However, accurate assessment of long-term ambient air pollution exposure, over long 
periods in the past, both on the individual and population scale, is a crucial step towards 
advancing the evidence base.  
 Traditional methods of estimating such exposures, e.g. by assigning concentrations 
measured at the nearest central site monitor, often make data collection easier and cheaper, and 
are generally readily available and reliable; however, they do not effectively capture within-
community spatial variation, which may be important, especially for spatially heterogenous 
pollutants (e.g., CO and NO2) [34-36]. Additionally, this direct form of exposure estimation may 
be impossible if distant past exposures are of interest, given insufficient monitor density in such 
time periods and areas of interest.  Studies relying on air pollution concentrations measured at 
central-site monitors may therefore introduce exposure misclassification by assuming spatial and 
even temporal homogeneity (e.g. when missing days are imputed) of air pollutant exposures 
where it did not or does not exist, which can bias health effect estimates [34, 35]. 
 Air pollution exposure modeling methods have been developed to estimate exposures where 
ground monitors are sparse, data is missing, or spatial misalignment is present between monitors 



and locations of interest [36, 37]. Methods include geo-statistical interpolation approaches, 
geographic information system (GIS)-based statistical models, air dispersion and chemical 
transport models, satellite models, and hybrid models [36-38].  Interpolation approaches such as 
inverse-distance weighting and kriging interpolate exposures measured at monitors to 
unmeasured locations using deterministic and stochastic geostatistical techniques, respectively 
[36]. GIS-based statistical models, such as land use regression and spatiotemporal models, 
predict spatial and temporal patterns of air pollution concentrations using geographic variables, 
including topographic, emissions, land use, and traffic data [36, 39]. Dispersion and chemical 
transport models, such as the Community Multiscale Air Quality (CMAQ) model, combine 
meteorological and emission data to predict AAP concentrations using deterministic processes 
over time and space [38]. Lastly, other studies rely on complex hybrid models that combine and 
integrate outputs from multiple environmental data sources and air pollution models [37].  
 Each air pollution modelling method has its own advantages and disadvantages. Dispersion 
and chemical transport models can be applied to generate spatially distributed and temporally 
rich exposure estimates, and do not rely on a dense network of monitoring stations. However, 
they are computationally intensive, obtaining input data can be costly, emissions inventories are 
incomplete and may be inaccurate, dispersion pattern assumptions may be unrealistic or limited 
to local environments, and they do not provide high spatial resolution over large domains[36]. 
Interpolation and GIS-based statistical models rely on the availability of data from monitoring 
stations, and may be less accurate when such data is unavailable or when pollutant 
concentrations vary significantly over small scales [36, 38]. Additionally, interpolation 
approaches do not take into account external environmental factors (i.e. meteorology, wind 
speed, traffic density, and land use) that could impact exposure estimation [36]. Land use 
regression models may not be generalizable to other locations [38].  Hybrid approaches that 
combine outputs may share these limitations, and also require additional assumptions for 
validity.   
 The potential impact of air pollution modelling approaches on epidemiologic findings 
remains unclear.  Unlike other areas of measurement, there is no gold standard for assessment of 
air pollution exposures.  While epidemiologic studies often report exposure model cross-
validation statistics comparing estimates to measured air pollution at monitoring sites [40-45], 
this form of comparison can be difficult to evaluate given the heterogeneity in the choice of 
validation statistics, variable spatiotemporal resolution of models, and differences in geographic 
areas covered by air pollution models. Additionally, cross-validation using monitoring sites may 
not adequately represent residences or other prediction locations, so comparisons of modelled 
data against that from monitoring stations may not be an appropriate validation approach [46, 47]  
Finally, independent set of monitor data external to the modeling process are seldom available. 
 Few studies have directly compared air pollution exposures across multiple methods or 
quantified the impact of air pollution estimation approaches on health effects estimates. In one 
example, Yu et al. compared 14 different methods for modeling daily concentrations of a variety 
of air pollutants in the Atlanta, Georgia region, ultimately demonstrating that any of the methods 
considered (besides raw CMAQ output) may be appropriate for certain applications [48]. 
Another study by McGuinn et al. used five air pollution exposure methods, including both 
monitored and modeled data (from satellite- and CMAQ-based models), to estimate associations 
between PM2.5 exposure and odds of coronary artery disease and myocardial infarction [49]. 
They found that choice of modeling approach did not substantially affect associations with those 
health outcomes [49]. In a study of the effects of air pollution exposure on lung function of 



children, correlations between LUR and dispersion models were high for NO2, PM2.5 and PM2.5 
soot, but lower for PM10 [50]. Associations were generally similar across models, but for PM2.5 
and PM10 they were stronger with wider confidence intervals for exposures based on the LUR 
model compared to the dispersion model [50]. Another study on the effects of 3-year estimated 
average PM2.5 on mortality from circulatory diseases and ischemic heart disease found 
significant associations for each of the seven included exposure models, but effect estimates 
were typically larger from models that incorporated ground-based information compared to those 
that only used remote sensing [47]. Overall, these studies seem to suggest that effect estimates 
may differ slightly, but still result in the same direction of association for different exposure 
models.  However, to date, few studies have compared long-term average exposures using 
modelling approaches developed by different groups or considered whether modelling approach 
impacts associations with late-life cognitive health.  The latter is of particular interest given 
substantial, yet unexplained heterogeneity in the current literature [51].    
 The Atherosclerosis Risk In Communities (ARIC) cohort [52] is a unique dataset in which 
we can compare individual air pollution exposure estimates from different modelling approaches 
employed by different research groups and assess whether choice of air pollution modelling 
approach influence its associations with late-life cognitive health including cognition and related 
neuroimaging outcomes.  
 Therefore, our goal is to compare estimates of annual-average air pollution exposures 
produced by different groups, and quantify whether choice of modelling approach influences 
estimated associations with cognition and related neuroimaging outcomes using the ARIC cohort 
data.  
 
5. Main Hypothesis/Study Questions: 
 
 Aim 1:  To assess the consistency and agreement of the air pollution exposure estimates 
from various air pollution models within the ARIC cohort, identifying any modeling approaches 
that do not produce similar estimates. We hypothesize that air pollution estimates from different 
modeling approaches will be similar; however, if there are any that do not have similar estimates 
this is important to determine as this difference could impact effect estimates for outcomes.  
  
 Aim 2: To determine whether choice of air pollution model influences the associations 
between air pollution exposures with Visit 5 MRI outcomes (total and regional brain volumes, 
and presence of lacunes, microbleeds, and white matter hyperintensities) and Visit 5 cognitive 
status. We hypothesize that associations with Visit 5 MRI and cognitive outcomes will be similar 
regardless of choice of air pollution model.  
 
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
 
Study Design  
 



This cohort study will compare estimates of long-term air pollution exposure generated from 
different models and estimate the association between air pollution exposure and MRI outcomes 
and cognitive status.  
 
Exclusions:  
 
 For all analyses, we will restrict to participants who attended Visit 5 and have Visit 5 
cognitive data. We will exclude participants who do not have a full geocoded residential history 
available for 2000 through 2007 or for whom we are unable to estimate air pollution exposures 
for this period. We will also exclude participants in small race-center categories: non-white 
participants in Minneapolis, MN and Washington County, MD; non-Black participants in 
Jackson, MS; and non-white or non-Black participants in Forsyth County, NC. Finally, we will 
exclude participants missing relevant covariate data.  
 For analyses of long-term air pollution exposure and Visit 5 MRI outcomes, we will further 
restrict to participants who have non-missing Visit 5 MRI data, no stroke prior to Visit 5, and no 
presence of tumor, surgery, or radiation to the head, or an implausible intracranial volume.  
 
Independent Variables: 
 
 Our primary exposure of interest will be annual PM2.5 at ARIC geocoded residential 
locations; in secondary analyses we may consider other pollutants, including PM10, NO2, ozone, 
and PM components. Geocoding efforts in the ARIC cohort have previously been validated, and 
have high accuracy[53, 54].  
 We will be comparing estimated air pollution exposures generated from multiple modeling 
approaches. The different approaches and their temporal resolution are summarized in Table 1.  
To date, ARIC investigators have used two different methods [42, 55](the approaches generated 
by Yanosky and Liao) to estimate air pollution exposures for participants using geocoded 
address-specific AAP concentrations. We are also working to link exposure estimates from 
models developed by three separate groups of investigators to the ARIC cohort: the Atmospheric 
Composition Analysis Group of Dalhousie University [56, 57], the Kaufman group at University 
of Washington [58, 59], and Dr. Qi Ying at Texas A&M University (in progress) as part of 
AS2016.20 and AS2020.09.  We may also add nearest-neighbor or inverse-distance weighted 
exposure assessment as well.  
 

Table 1: Air Pollution Modelling Approaches 
Modeling Approach  Type of 

Modeling 
Approach 

Pollutants Available Temporal 
Resolution 
Available 
to ARIC  

Yanosky [55] Generalized 
Additive Mixed 
Model with 
Land Use 
Regression 

PM2.5, PM10 Monthly  

Liao [42] National Log-
Normal 

PM2.5, PM10, O3, NO2, NOx, 
SO2 

Daily  



Measurement- 
Error Kriging 
Model  

Liao [42] National Log-
Normal 
Ordinary 
Kriging 

PM2.5, PM10, O3, NO2, SO2, 
CO 

Daily  

Dalhousie [56, 60] Chemical 
Transport-based 
Approach with 
Satellite and 
Ground 
Observations 

PM2.5, PM2.5 components Annual 

Kaufman [59] Universal 
Kriging with 
LUR & PLSR - 
Historical PM2.5 
Model 

PM2.5 Annual 

Kaufman [58] Regionalized 
Universal 
Kriging with 
LUR & PLSR - 
Biweekly 
Models 

PM2.5, NOx, NO2, Ozone Monthly  

Ying  CMAQ-
NEI/CMAQ-
EDGAR + 
Fusing + Near 
Roadway  

PM2.5 and PM2.5 components, 
ozone, NO2,

 SO2, and CO  
Monthly 
and annual 

 
 We will focus on comparing annual PM2.5 exposures for 2000 through 2007, as all models 
under consideration generated estimates for this pollutant and time period and long-term 
exposures are likely most relevant for cognitive outcomes. In sensitivity analyses, we may also 
consider comparing estimates for PM10, O3, NO2, and PM2.5 components (note that not all of the 
aforementioned models generated exposure estimates for ozone, NO2, and PM2.5 components). 

 
Dependent Variables:  
 Our primary outcomes are Visit 5 cognitive status and Visit 5 MRI outcomes. All ARIC 
participants were administered an extensive battery of cognitive tests at Visit 5: delayed word 
recall (DWR), logical memory I and II, incremental learning, trail making test parts A and B, 
digit symbol substitution test, digit span backwards, animal naming, Boston naming, word 
fluency, and clock time. In primary analyses we will focus on the global factor score. In 
sensitivity analyses, we will also explore associations with domain-specific cognitive test scores.  
 MRI outcomes include the following: brain volumes (total, hippocampus, Alzheimer’s 
disease signature region, regional), presence of lacunar and cortical infarcts, white matter 
hyperintensity volume, presence of severe white matter hyperintensities, and presence of 



microbleeds. Brain volumes and white matter hyperintensity volume will be continuous 
measures (white matter hyperintensity volume will likely be log-transformed, as previous 
analyses demonstrate that this variable is largely skewed). All other outcomes will be 
dichotomous.  
 
Covariates: 
 All analyses will be adjusted for a set of variables determined a priori: age, education, 
gender, BMI, smoking status, and area-level socioeconomic status. Analyses with MRI outcomes 
will also be adjusted for total intracranial volume.  In a secondary analysis, we might further 
adjust for physical activity and occupational category.   
 
Statistical Analysis  
 
Aim 1: Air Pollution Comparison 
 

We will first use descriptive statistics and plots to assess agreement between the air 
pollution estimates.  These will include calculation of means, standard deviations, ranges, 
minima, maxima, and percentiles for average air pollution exposures for each air pollution model 
as well as plots including boxplots and density plots. We will also create dot maps representing 
air pollution estimations at each ARIC participant location for each air pollution modeling 
method to aid understanding of how well air pollution estimates agree with each other across 
space. Dots will be of a sufficient resolution or jittered such that there are not identifiability 
issues.  

Absolute differences between air 
pollution estimates will explored by 
calculating the mean bias, mean error, and 
root mean square error between all possible 
pairs of air pollution models (equations in 
Figure 1) Because no one model represents 
“true” exposures, these statistics will 
represent absolute differences between 
modeled air pollution estimates rather than 
how well the models predict true air 
pollution exposures.  We will also consider 
completing a clustering analysis 
(multidimensional scaling), which is a 
visualization technique that groups models 
into clusters based on correlation [61].  

To visually represent and compare 
both the absolute and relative differences between pairs of air pollution models, we will 
construct Bland-Altman plots[62]. With these plots, we will be able to determine the average 
difference between estimates generated by each pair of air pollution models. We will also 
determine whether estimates tend to agree or disagree more as the average air pollution estimate 
increases, further generating suggestions for when pollution estimation methods are comparable 
and when they produce substantially different estimates.    

Figure 1.  Equations for assessing absolute differences 
between pairs of air pollution models  
(equations adapted from the US EPA Air Quality Model 
Performance Metric Definitions document): 
 



Agreement between air pollution estimates will also be assessed using Deming regression.  If 
there is no systematic difference between air pollution estimates, the slope of the estimated 
regression line should be close to 1 and the intercept close to 0. A deviation from the slope of 1 
indicates a proportional discrepancy between air pollution estimates.  A non-zero intercept 
represents an absolute discrepancy between air pollution estimates. We will also visually assess 
correlations using scatterplots as well as examining Pearson and Spearman correlation 
coefficients. 

 
We will repeat all of these analyses stratified by study site, in order to investigate spatial 

variability of agreement.  

 
Aim 2: Associations between PM2.5 and Cognitive- as well as MRI-Related Outcomes 
 
 Given concerns that between-site variation in PM will be large in comparison to within-
site variation and known regional differences in PM2.5 composition, we will initially perform all 
analyses separately by site. Site-specific analyses will be meta-analyzed using a random-effects 
model to produce an effect for the entire cohort, as done previously in analyses of air pollution 
and MRI outcomes [62, 63]. Heterogeneity of effect will be evaluated using the I2 test[64]; if this 
test suggests no heterogeneity across sites, we will examine models considering the entire ARIC 
population as a single sample.  

We propose to use linear (for outcomes white matter hyperintensities, volumes, cognitive 
factors cores) and logistic regression (for outcomes cortical infarcts, lacunes, and microbleeds) to 
assess the association between PM2.5 with cognitive status and MRI markers. All analyses with 
MRI markers will be weighted using coordinating center derived weights to account for the 
sampling strategy for Visit 5 stage 3 MRI and refusals. We will appropriately adjust for known 
confounders detailed above. 

We will calculate the association between air pollution exposure and each outcome using 
exposures from each of the models to see how variations in air pollution estimates may influence 
health effect estimates. We will also plot each air pollution model’s associated effect estimates 
(betas and odds ratios) and 95% confidence intervals in a forest plot to visually represent 
whether effect estimates tend to agree, and whether precision in health effect estimates between 
air pollution methods is comparable.  
 
Limitations and Challenges 
 
We recognize the constraints of our chosen approach. Primarily, our study will not tell us which 
air pollution model performs the best; rather, our intention is to characterize the absolute and 
relative agreement between models as a first step towards understanding why these differences 
occur. We will only consider air pollution exposures between 2000 and 2007 because this period 
gives us the most overlap between models. It is possible that exposures in the more distant past 
are more predictive of late-life cognition and MRI-related outcomes. It is also possible that there 
is residual confounding that cannot be accounted for with available data. However, our goal here 
is to determine whether associations are markedly different depending on the air pollution model 
used to assign PM2.5 exposures. We will emphasize interpreting the differences between effect 
estimates rather than interpreting the magnitude of singular effect estimates.  
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